آشکارسازی آسیب‌های کبد در تصاویر دوبعدی آلتراسوند با استفاده ازشبکه‌های عصبی عمیق LSTM

فهرست مطالب

چکیده  1

فصل 1: کلیات  2

1-1- مقدمه.. 3

1-2- بیان مسأله.. 3

1-3- ضرورت تحقیق.. 5

1-4- اهداف تحقیق.. 6

1-4-1- هدف اصلی.. 6

1-4-2- اهداف فرعی.. 6

1-5- بهره‏وران پژوهش.. 6

1-6- فرضیه‌های تحقیق.. 7

1-6-1- فرضیه اصلی.. 7

1-6-2- فرضیه فرعی.. 7

1-7- جنبه نوآوری پژوهش.. 7

فصل 2: مبانی نظری  8

2-1- مقدمه.. 9

2-2- کبد چرب غیرالکلی.. 9

2-2-1- شناسایی کبد چرب.. 10

2-2-2- تصویربرداری کبدی.. 10

2-2-3- نشانگرهای زیستی تشخیص کبد چربی غیر الکلی.. 11

2-3- انتخاب و استخراج ویژگی.. 14

2-3-1- تراکم نقطه نور در نزدیکی میدان (NFLSD) 14

2-3-2- تشخیص کبد چرب بر اساس تصویر برداری کورتوزیس اولتراسوند   18

2-4- بررسی کامپیوتری توموگرافی پرفشاری خون در بیماری کبد چرب غیرالکلی.. 20

2-4-1- ماتریس درهم ریختگی.. 22

2-4-2- گراف ROC.. 22

2-4-3- ویژگی هیستوگرام GLRLM... 22

2-4-4- ویژگی‌های ترکیبی انتخابی.. 23

2-5- روش‌های مبتنی بر یادگیری ماشین.. 23

2-6- انواع تکنیک‌های یادگیری ماشین.. 24

2-6-1- یادگیری ژرف.. 24

2-7- شبکه‌های عصبی پیچشی.. 28

2-7-1- شبکه عصبی پیش‌رو.. 28

2-7-2- عملکرد شبکه‌های پیچشی در پردازش تصویر.. 29

2-8- ساختار شبکه عصبی پیچشی.. 33

2-8-1- یادگیری شبکه عصبی.. 35

2-8-2- ساختارهای مختلف شبکه عصبی کانولوشنی.. 38

2-8-3- اعتبارسنجی تقابلی.. 42

2-9- ارتقای کارایی شبکه.. 42

2-9-1- بهینه سازی.. 42

2-9-2- روش‌های مرتبه اول.. 43

2-9-3- تکنیک‌های بهینه سازی پیشرفته مرتبه اول.. 44

2-10- توابع فعالسازی.. 46

2-10-1- تابع تانژانت هذلولوی.. 47

2-10-2- تابع واحد یکسو کننده خطی.. 47

2-10-3- تابع واحد یکسو کننده خطی رخنه دار.. 48

2-11- مقدار‌دهی اولیه وزن‌ها.. 48

2-12- مقداردهی اولیه با صفر.. 48

2-12-1- اعداد تصادفی کوچک.. 49

2-12-2- مقدار دهی پراکنده.. 49

2-12-3- نرمال‌سازی دسته‌ای.. 49

2-13- تابع هزینه.. 50

2-13-1- مجموعه مربعات خطا.. 50

2-13-2- منظم‌سازی و بیش‌برازش.. 51

2-13-3- ریزش.. 52

2-14- استخراج ویژگی.. 53

2-14-1- خودکدگشا.. 53

2-14-2- ساختار دو بخشی خودکدگشا.. 54

2-15- پیشینه پژوهش.. 55

فصل 3: روش پیشنهادی  60

3-1- مقدمه.. 61

3-2- مدل پیشنهادی.. 61

فصل 4: نتایج و تفسیر آن‌ها  66

4-1- مقدمه.. 67

4-2- مجموعه دادگان.. 67

4-3- معیار ارزیابی.. 68

4-4- نتایج.. 68

فصل 5: جمع‌بندی و پیشنهادها  70

5-1- مقدمه.. 71

5-2- پیشنهادهای آتی.. 73

مراجع  74

 

 

 

فهرست جداول

جدول ‏2‑1 میزان نرخ دقت تقسیم بندی در کبدهای نرمال و چرب [7] 16

جدول ‏2‑2 برخی معماری‌های مشهور شبکه‌های کانولوشنی.. 41

جدول ‏2‑3 خلاصه‌ای از پیشینه پژوهش.. 58

جدول ‏4‑1 نتایج حاصل از آزمون.. 69

جدول ‏4‑2 نتایج حاصل از آزمون با انتقال نمونه‌ها در فضای ویژگی  69


فهرست اشکال

شکل ‏2‑1تصویر سونوگرافی کبد و ROI انتخاب شده [13] 11

شکل ‏2‑2 یک نمودار درک زیستی در پشت یک نرون. ورودی‌ها با سیناپس‌های به صورت ضربی در تعامل هستند[38] 30

شکل ‏2‑3: ساختار درونی یک شبکه عصبی کانولوشنال. [39].. 31

شکل ‏2‑4: قسمتی از یک شبکه عصبی کانولوشنی.. 34

شکل ‏2‑5 شبکه‌های عصبی چندلایه و پس انتشار[39]... 36

شکل ‏2‑6 معماری شبکه LeNet، از فیلترهای 5*5 با گام 1 به کار گرفته شده است. از لایه‌های پولینگ 2*2 با گام 2 استفاده شده است[1].  39

شکل ‏2‑7 : معماری شبکه [1] AlexNet 39

شکل ‏2‑8: معماری ZFNet [1].. 40

شکل ‏2‑9 ریزش را در یک شبکه عصبی نشان می‌دهد [35] 52

شکل ‏2‑10 یک شبکه خودکدگشای[63] 54

شکل ‏3‑1 نموار فلوچارت روش پیشنهادی.. 62

شکل ‏3‑2 بلوک حافظه LSTM... 63

شکل ‏3‑3 معماری مدل ترکیبی LSTM پیشنهادی.. 64

 

Abstract:

Fatty liver is a common liver disease caused by the accumulation of fat in the liver cells which is created with steatosis protein. It can cause permanent damage to the liver without on time and effective control. At present, the amount of fatty liver is a growing trend due to increasing obesity, alcohol and diabetes. Therefore, a quantitative analysis of liver ultrasound image using computer tools and methods is essential and useful to establish a standard clinical method for the diagnosis of fatty liver and improvement of diagnostic accuracy, repeatability and clinical efficacy, which will help specialists in this field to make a faster and more accurate diagnosis based on medical images.

The most common cause of liver disease is Non-Alcoholic Fatty Liver Disease (NAFLD), for which the use of Deep Learning Technology in the disease detection in ultrasound images can be an effective method. The main challenge of this research is to find a structure that can be trained on disease data with the ability of highest possible accuracy.

In this study which was performed on 1100 liver ultrasound images, Deep Learning Technology and a Self-Generating Network-based method with different parameters to classify fatty and healthy liver images were used and trained. After training the network, samples are provided to the network and the feature vector extracted from each image is used to teach the CNN and LSTM classifiers.

The results show that the accuracy rate of the LSTM-based model is 25% higher than the CNN-based model, and also with increasing the number of Self-Generating layers, the correctness rate improves and compared to the No-Learning Metrics mode, better results are obtained.

چکیده

کبد چرب یک بیماری شایع کبدی ناشی از انباشت چربی در سلول‌های کبدی است که از طریق پروتئین استاتوزی ایجاد می‌شود. بدون کنترل به موقع و موثرممکن است باعث آسیب دائمی به کبد شود. در حال حاضر میزان بروز کبد چرب به دلیل رشد چاقی، الکل و دیابت همچنان افزایش می‌یابد. بنابراین یک تجزیه و تحلیل کمّی تصویر سونوگرافی کبدی با استفاده از ابزارها و روش‌های کامپیوتری امری ضروری است و به ایجاد روش بالینی هدف تشخیص کبد چرب و استاندارد و بهبود دقت تشخیصی، تکرارپذیری و کارآیی بالینی کمک خواهد کرد که این مهم باعث کمک به تشخیص دقیق‌تر و سریع‌تر بیماری از روی تصاویر پزشکی به متخصصان این حوزه خواهد کرد. شایع ترین علت بیماری کبدی، کبد چرب غیر الکلی (NAFLD)است که بدین منظور استفاده از تکنولوژی یادگیری عمیق در شناسایی بیماری در تصاویر التراسوند می‌تواند روش موثری باشد. چالش اصلی این پژوهش در حقیقت یافتن پیکره‌ای با قابلیت آموزش بر روی دادگان بیماری با بالاترین دقت ممکن است. در پژوهش صورت گرفته که بر روی 1100 تصویر سونوگرافی کبد صورت گرفت با استفاده از تکنولوژی یادگیری عمیق و یک روش مبتنی بر شبکه خودکدگشا با پارامترهای مختلف برای دسته بندی تصاویر کبد چرپ و سالم مورد بررسی قرار گرفت و آموزش داده شد.پس از آموزش شبکه نمونه‌ها به شبکه ارائه شده و بردار ویژگی مستخرج از هر تصویر، برای آموزش طبقه بندهای CNN وLSTM مورد استفاده قرار می‌گیرد. نتایج حاصله بیانگر این است که نرخ صحت مدل مبتنی بر LSTM به میزان  25٪ بیشتر از مدل مبتنی بر CNN است و همچنین با افزایش تعداد لایه‎های خودکدگشا، نرخ صحت نیز بهبود یافته و همچنین نسبت به حالت بدون یادگیری متریک، نتایج بهتری حاصل شده است.



 قیمت: 55,000 تومان  پرداخت و دانلود

#نسخه_الکترونیکی_کمک_در_کاهش_تولید_کاغذ_است. #اگر_مالک_یا_ناشر_فایل_هستید، با ثبت نام در سایت محصول را به سبدکاربری خود منتقل و درآمدفروش آن را دریافت نمایید.


برچسب ها: آشکارسازی کبد چرب LSTM آلتراسوند کبد غیر الکلی
دسته بندی: کالاهای دیجیتال » رشته کامپیوتر و IT (آموزش_و_پژوهش)

تعداد مشاهده: 3093 مشاهده

فرمت محصول دانلودی:

فرمت فایل اصلی: doc

تعداد صفحات: 87

حجم محصول:3,960 کیلوبایت


نماد اعتماد الکترونیکی


با خرید از ما کدتخفیف10درصدی هدیه دریافت کنید!

درباره ما

"فارسفایل"سال1391 به عنوان اولین مرکز ارائه فروش محصولات دیجیتال با هدف کارآفرینی تاسیس گردید. این حوزه با افزایش آنلاین شاپ ها در کسب کارهای اینترنتی بخش بزرگی از تجارت آنلاین جهانی را در این صنعت تشکیل داده است. حال بستری مناسب برای راه اندازی فروشگاه کسب کار شما آماده شده که امکان فروش محتوا و محصولات دیجیتالی شما وجود دارد.

تماس با ما

آدرس: گناباد، بخش مرکزی، شهرک فرهنگیان، بلوار استقلال، بلوار امام سجاد پلاک70 طبقه_همکف کدپستی9691944367
(ساعت پاسخگویی 7صبح الی 24شب)

تلفن تماس051-57261834 ایمیلfarsfile@gmail.com ارسال پیام در تلگـــرام

نشان و آمار سایت

logo-samandehi
259,113 بازدید امروز
327,733 بازدید دیروز
453,120,241 بازدید کل
51,490 فروش موفق
21,004 تعداد فروشگاه
48,625 تعداد فایل
تمام حقوق مادی و معنوی سایت برای فارسفایل محفوظ می باشد.
کدنویسی توسط : فارسفایل