پياده سازي VLSI يك شبكه عصبي آنالوگ مناسب براي الگوريتم هاي ژنتيك

خلاصه
مفيد بودن شبكه عصبي آنالوگ مصنوعي بصورت خيلي نزديكي با ميزان قابليت آموزش پذيري آن محدود مي شود .
اين مقاله يك معماري شبكه عصبي آنالوگ جديد را معرفي مي كند كه وزنهاي بكار برده شده در آن توسط الگوريتم ژنتيك تعيين مي شوند .
اولين پياده سازي VLSI ارائه شده در اين مقاله روي سيليكوني با مساحت كمتر از 1mm كه شامل 4046 سيناپس و 200 گيگا اتصال در ثانيه است اجرا شده است .
از آنجائيكه آموزش مي تواند در سرعت كامل شبكه انجام شود بنابراين چندين صد حالت منفرد در هر ثانيه مي تواند توسط الگوريتم ژنتيك تست شود .
اين باعث مي شود تا پياده سازي مسائل بسيار پيچيده كه نياز به شبكه هاي چند لايه بزرگ دارند عملي بنظر برسد .
- مقدمه
شبكه هاي عصبي مصنوعي به صورت عمومي بعنوان يك راه حل خوب براي مسائلي از قبيل تطبيق الگو مورد پذيرش قرار گرفته اند .
عليرغم مناسب بودن آنها براي پياده سازي موازي ، از آنها در سطح وسيعي بعنوان شبيه سازهاي عددي در سيستمهاي معمولي استفاده مي شود .
يك دليل براي اين مسئله مشكلات موجود در تعيين وزنها براي سيناپسها در يك شبكه                                    بر پايه مدارات آنالوگ است .
موفقترين الگوريتم آموزش ، الگوريتم Back-Propagation است .
اين الگوريتم بر پايه يك سيستم متقابل است كه مقادير صحيح را از خطاي خروجي شبكه محاسبه مي كند .
يك شرط لازم براي اين الگوريتم دانستن مشتق اول تابع تبديل نرون است .
در حاليكه اجراي اين مسئله براي ساختارهاي ديجيتال از قبيل ميكروپروسسورهاي معمولي و سخت افزارهاي خاص آسان است ، در ساختار آنالوگ با مشكل روبرو مي شويم .
دليل اين مشكل ، تغييرات قطعه و توابع تبديل نرونها و در نتيجه تغيير مشتقات اول آنها از نروني به نرون ديگر و از تراشه اي به تراشه ديگر است و چه چيزي مي تواند بدتر از اين باشد كه آنها با دما نيز تغيير كنند .
ساختن مدارات آنالوگي كه بتوانند همه اين اثرات را جبران سازي كنند امكان پذير است ولي اين مدارات در مقايسه با مدارهايي كه جبران سازي نشده اند داراي حجم بزرگتر و سرعت كمتر هستند . 
براي كسب موفقيت تحت فشار رقابت شديد از سوي دنياي ديجيتال ، شبكه هاي عصبي آنالوگ نبايد سعي كنند كه مفاهيم ديجيتال را به دنياي آنالوگ انتقال دهند .
در عوض آنها بايد تا حد امكان به فيزيك قطعات متكي باشند تا امكان استخراج يك موازي سازي گسترده در تكنولوژي VLSI مدرن بدست آيد .
شبكه هاي عصبي براي چنين پياده سازيهاي آنالوگ بسيار مناسب هستند زيرا جبران سازي نوسانات غير قابل اجتناب قطعه مي تواند در وزنها لحاظ شود .
مسئله اصلي كه هنوز بايد حل شود آموزش است .
حجم بزرگي از مفاهيم شبكه عصبي آنالوگ كه در اين زمينه مي توانند يافت شوند ، تكنولوژيهاي گيت شناور را جهت ذخيره سازي وزنهاي آنالوگ بكار مي برند ، مثل EEPROM حافظه هاي Flash .
در نظر اول بنظر مي رسد كه اين مسئله راه حل بهينه اي باشد .
آن فقط سطح كوچكي را مصرف مي كند و بنابراين حجم سيناپس تا حد امكان فشرده مي شود (كاهش تا حد فقط يك ترانزيستور) .
دقت آنالوگ مي تواند بيشتر از 8 بيت باشد و زمان ذخيره سازي داده (با دقت 5 بيت) تا 10 سال افزايش مي يابد .
اگر قطعه بطور متناوب مورد برنامه ريزي قرار گيرد ، يك عامل منفي وجود خواهد داشت                               و آن زمان برنامه ريزي و طول عمر محدود ساختار گيت شناور است .
بنابراين چنين قطعاتي احتياج به وزنهايي دارند كه از پيش تعيين شده باشند .
اما براي محاسبه وزنها يك دانش دقيق از تابع تبديل شبكه ضروري است .
براي شكستن اين چرخه پيچيده ، ذخيره سازي وزن بايد زمان نوشتن كوتاهي داشته باشد .
اين عامل باعث مي شود كه الگوريتم ژنتيك وارد محاسبات شود .
با ارزيابي تعداد زيادي از ساختارهاي تست مي توان وزنها را با بكار بردن يك تراشه واقعي تعيين كرد .
همچنين اين مسئله مي تواند حجم عمده اي از تغييرات قطعه را جبران سلزي كند ، زيرا داده متناسب شامل خطاهايي است كه توسط اين نقايص ايجاد شده اند .
- مقدمه
شبكه هاي عصبي مصنوعي به صورت عمومي بعنوان يك راه حل خوب براي مسائلي از قبيل تطبيق الگو مورد پذيرش قرار گرفته اند .
عليرغم مناسب بودن آنها براي پياده سازي موازي ، از آنها در سطح وسيعي بعنوان شبيه سازهاي عددي در سيستمهاي معمولي استفاده مي شود .
يك دليل براي اين مسئله مشكلات موجود در تعيين وزنها براي سيناپسها در يك شبكه                                    بر پايه مدارات آنالوگ است .
موفقترين الگوريتم آموزش ، الگوريتم Back-Propagation است .
اين الگوريتم بر پايه يك سيستم متقابل است كه مقادير صحيح را از خطاي خروجي شبكه محاسبه مي كند .
يك شرط لازم براي اين الگوريتم دانستن مشتق اول تابع تبديل نرون است .
در حاليكه اجراي اين مسئله براي ساختارهاي ديجيتال از قبيل ميكروپروسسورهاي معمولي و سخت افزارهاي خاص آسان است ، در ساختار آنالوگ با مشكل روبرو مي شويم .
دليل اين مشكل ، تغييرات قطعه و توابع تبديل نرونها و در نتيجه تغيير مشتقات اول آنها از نروني به نرون ديگر و از تراشه اي به تراشه ديگر است و چه چيزي مي تواند بدتر از اين باشد كه آنها با دما نيز تغيير كنند .
ساختن مدارات آنالوگي كه بتوانند همه اين اثرات را جبران سازي كنند امكان پذير است ولي اين مدارات در مقايسه با مدارهايي كه جبران سازي نشده اند داراي حجم بزرگتر و سرعت كمتر هستند . 
براي كسب موفقيت تحت فشار رقابت شديد از سوي دنياي ديجيتال ، شبكه هاي عصبي آنالوگ نبايد سعي كنند كه مفاهيم ديجيتال را به دنياي آنالوگ انتقال دهند .
در عوض آنها بايد تا حد امكان به فيزيك قطعات متكي باشند تا امكان استخراج يك موازي سازي گسترده در تكنولوژي VLSI مدرن بدست آيد .
شبكه هاي عصبي براي چنين پياده سازيهاي آنالوگ بسيار مناسب هستند زيرا جبران سازي نوسانات غير قابل اجتناب قطعه مي تواند در وزنها لحاظ شود .
مسئله اصلي كه هنوز بايد حل شود آموزش است .
حجم بزرگي از مفاهيم شبكه عصبي آنالوگ كه در اين زمينه مي توانند يافت شوند ، تكنولوژيهاي گيت شناور را جهت ذخيره سازي وزنهاي آنالوگ بكار مي برند ، مثل EEPROM حافظه هاي Flash .
در نظر اول بنظر مي رسد كه اين مسئله راه حل بهينه اي باشد .
آن فقط سطح كوچكي را مصرف مي كند و بنابراين حجم سيناپس تا حد امكان فشرده مي شود (كاهش تا حد فقط يك ترانزيستور) .
دقت آنالوگ مي تواند بيشتر از 8 بيت باشد و زمان ذخيره سازي داده (با دقت 5 بيت) تا 10 سال افزايش مي يابد .
اگر قطعه بطور متناوب مورد برنامه ريزي قرار گيرد ، يك عامل منفي وجود خواهد داشت                               و آن زمان برنامه ريزي و طول عمر محدود ساختار گيت شناور است .
بنابراين چنين قطعاتي احتياج به وزنهايي دارند كه از پيش تعيين شده باشند .
اما براي محاسبه وزنها يك دانش دقيق از تابع تبديل شبكه ضروري است .
براي شكستن اين چرخه پيچيده ، ذخيره سازي وزن بايد زمان نوشتن كوتاهي داشته باشد .
اين عامل باعث مي شود كه الگوريتم ژنتيك وارد محاسبات شود .
با ارزيابي تعداد زيادي از ساختارهاي تست مي توان وزنها را با بكار بردن يك تراشه واقعي تعيين كرد .
همچنين اين مسئله مي تواند حجم عمده اي از تغييرات قطعه را جبران سلزي كند ، زيرا داده متناسب شامل خطاهايي است كه توسط اين نقايص ايجاد شده اند .


 قیمت: 35,000 تومان  پرداخت و دانلود

#نسخه_الکترونیکی_کمک_در_کاهش_تولید_کاغذ_است. #اگر_مالک_یا_ناشر_فایل_هستید، با ثبت نام در سایت محصول را به سبدکاربری خود منتقل و درآمدفروش آن را دریافت نمایید.


برچسب ها: مقاله پياده سازي VLSI شبكه عصبي آنالوگ الگوريتم هاي ژنتيك
دسته بندی: کالاهای دیجیتال » رشته برق و مخابرات (آموزش_و_پژوهش)

تعداد مشاهده: 3602 مشاهده

فرمت محصول دانلودی:.doc

فرمت فایل اصلی: doc

تعداد صفحات: 22

حجم محصول:549 کیلوبایت


نماد اعتماد الکترونیکی


با خرید از ما کدتخفیف10درصدی هدیه دریافت کنید!

درباره ما

"فارسفایل"سال1391 به عنوان اولین مرکز ارائه فروش محصولات دیجیتال با هدف کارآفرینی تاسیس گردید. این حوزه با افزایش آنلاین شاپ ها در کسب کارهای اینترنتی بخش بزرگی از تجارت آنلاین جهانی را در این صنعت تشکیل داده است. حال بستری مناسب برای راه اندازی فروشگاه کسب کار شما آماده شده که امکان فروش محتوا و محصولات دیجیتالی شما وجود دارد.

تماس با ما

آدرس: گناباد، بخش مرکزی، شهرک فرهنگیان، بلوار استقلال، بلوار امام سجاد پلاک70 طبقه_همکف کدپستی9691944367
(ساعت پاسخگویی 7صبح الی 24شب)

تلفن تماس051-57261834 ایمیلfarsfile@gmail.com ارسال پیام در تلگـــرام

نشان و آمار سایت

logo-samandehi
381,007 بازدید امروز
370,884 بازدید دیروز
453,613,019 بازدید کل
51,643 فروش موفق
21,067 تعداد فروشگاه
48,669 تعداد فایل
تمام حقوق مادی و معنوی سایت برای فارسفایل محفوظ می باشد.
کدنویسی توسط : فارسفایل